# How to Prove It - Solutions

## Chapter - 1, Sentential Logic

### Summary

• Statements with Variables. For eg: “x is divisible by 9”, “y is a person” are statements. Here x, and y are variables.
• These statements are true or false based on the value of variables.
• Sets, a collection of objects.
• Bound and Unbound variables. Eg: $$y ∈ {x\,\vert\,x^3 < 9}$$ , $y$ is a free variable, whereas $x$ is a bound variable.
• Free variables in a statement are for objects for which statement is talking about.
• Bound variables are just dummy variables to help express the idea. Thus bound variables dont represent any object of the statement.
• The truth set of a statement P(x) is the set of all values of x that make the statement P(x) true.
• The set of all possible values of variables is call universe of discourse. Or variables range over this universe.
• In general, $y ∈ \{x ∈ A\,\vert\,P(x)\}$ means the same thing as $y ∈ A ∧ P(y)$.

### Solutions

Soln1

(a) $D(6,3) \land D(9,3) \land D(15, 3)$ where $D(x, y)$ means $x$ is divisible by $y$.

(b) $D(x,2) \land D(x,3) \land \lnot D(x, 4)$ where $D(x, y)$ means $x$ is divisible by $y$.

(c) $(\lnot P(x) \land P(y)) \lor (P(x) \land \lnot P(y)$ where $P(x) = \{ x \in \mathbb{N}\,\vert\, x \text{ is prime} \}$.

Soln2

(a) $M(x) \land M(y) \land (T(x,y) \lor T(y,x))$ where $M(x)$ is “x is men”, $T(x, y)$ means “x is taller than y”.

(b) $[(B(x) \lor B(y)) \land (R(x) \lor R(y)]$ where $B(x)\text{ and }R(x)$ means “x has brown eyes” and “x has brown hairs” respectively.

(c) $[(B(x) \land R(x)) \lor (B(y) \land R(y)]$ where $B(x)\text{ and }R(x)$ means “x has brown eyes” and “x has brown hairs” respectively.

Soln3

(a) $\{ x\,\vert\,x\text{ is a planet }\}$

(b) $\{ x\,\vert\,x\text{ is a university }\}$

(c) $\{ x\,\vert\,x\text{ is a state in US }\}$

(d) $\{ x\,\vert\,x\text{ is a province in Canada }\}$

Soln4

(a) ${ x^2\,\vert\, x > 0 \text{ and } x \in \mathbb{N} }$

(b) $\{ 2^x\,\vert\, x \in \mathbb{N} \}$

(c) $\{ x \in \mathbb{N}\,\vert\, 10 \le x \le 19 \}$

Soln5

(a) $−3 ∈ \{x ∈ \mathbb{R}\vert\,13 − 2x > 1\} \Rightarrow -3 \in \mathbb{R} \land 19 > 1$. No free variables in the statement. Statement is true.

(b) $4 ∈ \{x ∈ \mathbb{R^+}\vert\,13 − 2x > 1\} \Rightarrow 4 \in \mathbb{R^+} \land 5 > 1$. No free variables in the statement. Statement is false.

(c) $5 \notin \{x ∈ \mathbb{R}\vert\,13 − 2x > c\} \Rightarrow \lnot{ \{ 5 \in \mathbb{R} \land 3 > c \}} \Rightarrow 5 \notin \mathbb{R} \lor 3 \le c$. One free variable(c) in the statement. (Thanks Maxwell for the correction)

Soln6

(a) $(w ∈ \mathbb{R}) \land (13 - 2w > c)$. There are two free variables $w$ and $c$.

(b) $(4 \in \mathbb{R}) \land (13 - 2 \times 4 \in P) \Rightarrow (4 \in \mathbb{R}) \land (5 \in P)$. The statement has no free variables. It is a true statement.

(c) $(4 \in P) \land (13 - 2 \times 4 > 1) \Rightarrow (4 \in P) \land (5 > 1)$. The statement has no free variables. It is a false statement.

Soln7

(a) {Conrad Hilton Jr., Michael Wilding, Michael Todd, Eddie Fisher, Richard Burton, John Warner, Larry Fortensky}.

(b) $\{ \lor, \land, \lnot \}$

(c) { Daniel Velleman }

Soln8

(a) {1, 3}

(b) $\phi$

(c)

Update:

As pointed out in comments, I got this wrong first time. Here is the correct answer:

$\{ x ∈ R \,\vert\, x^2 < 25 \}$ or, equivalently $\,\vert x \vert\, \lt 5$.

$$\{1, 2, 3, 4, 5, 6, 7 \}$$