Chapter 1, Building Abstractions with Procedures
Section - Formulating Abstractions with Higher-Order Procedures
Exercise 1.45
I tried to fing the value for number of damping but unable to do so. Thus I have written the procedure that takes number of dampings also as an argument.
Here is the complete program including all the required other procedures:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#lang sicp
(define tolerance 0.00001)
(define (fixed-point f first-guess)
(define (close-enough? v1 v2)
(< (abs (- v1 v2)) tolerance)
)
(define (try guess)
(let ((next (f guess)))
(if (close-enough? guess next)
next
(try next)
)
)
)
(try first-guess)
)
(define (expt b n)
(expt-iter b n 1))
(define (expt-iter b counter product)
(if (= counter 0)
product
(expt-iter b
(- counter 1)
(* b product)
)
)
)
(define (average a b) (/ (+ a b) 2))
(define (average-damp f)
(lambda (x) (average x (f x)))
)
(define (sqrt x)
(fixed-point (average-damp (lambda (y) (/ x y))) 1.0)
)
(define (nth-root x n d)
(fixed-point (repeated (average-damp (lambda (y) (/ x (expt y (- n 1))))) d) 1.0)
)
(define (compose f g)
(lambda (x) (f (g x)))
)
(define (repeated f n)
(define (repeat rs k)
(if (= k 1) rs (repeat (compose rs f) (dec k)))
)
(repeat f n)
)
I verfied that 4th root requires twice damping as mentioned in exercise. Then I checked till 12th root and twice damping works fine.
But at 13th root I tried with $3, 4$ but program was not returning. There may be following cases:
- Either program is actually taking too much time for converging.
- Or the damping is not enough and program is going into infinite loop.
One way to figure out if it is going to infinite loop, is to modify the procedure fixed-point to store all the in between states. And as soon as a state is repeated we can report that and exit the program.
I have not implemented the said way because of shortage of time.
Here is the sample that I have tried:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
> (nth-root 4 2 1)
2.000000000000002
> (nth-root 16 4 1)
. . user break
> (nth-root 16 4 2)
1.9829851551723494
> (nth-root 32 4 2)
2.3593094400395302
> (nth-root 32 5 2)
2.880431566615636
> (nth-root 64 6 2)
1.6880168356784016
> (nth-root 64 6 2)
1.6880168356784016
> (nth-root 64 7 2)
1.5563420802638785
> (nth-root 64 8 2)
2.9011991693926418
> (nth-root 64 9 2)
1.587407910960035
> (nth-root 64 10 2)
1.5157217915986738
> (nth-root 64 12 2)
1.2905943261680461
> (nth-root 10000000000 10 2)
. . user break
> (nth-root 10000000000 9 2)
12.915487872561545
> (nth-root 10000000000 10 3)
16.357875254120504
> (nth-root 10000000000 10 4)
8.8252937823063
> (nth-root 10000000000 10 5)
27.27799717247438
> (nth-root 10000000000 10 2)
9.999999377157861
> (nth-root 100000000000 11 2)
9.999996259502574
> (nth-root 1000000000000 12 2)
9.125893472950704
> (nth-root 10000000000000 13 2)
. . user break
> (nth-root 10000000000000 13 3)
. . user break
> (nth-root 10000000000000 13 4)
. . user break
> (nth-root 1000 13 2)
. . user break
> (nth-root 10000 13 3)
. . user break
> (nth-root 10000 13 4)
. . user break
> (nth-root 10000000000000 13 5)
. . user break
> (nth-root 10000000000000 13 1)
. . user break
> (nth-root 100000 12 2)
4.760492124974238
> (nth-root 100000 12 3)
2.3487475654398975
> (nth-root 100000 12 2)
4.760492124974238
> (nth-root 100000 13 2)
. . user break
> (nth-root 10000000 10 2)
8.957522092165945
> (nth-root 10000000000 10 2)
9.999999377157861
> (nth-root 10000000000 11 2)
7.341666504082071
> (nth-root 10000000000 12 2)
6.217396596725342
> (nth-root 10000000000 13 2)
. . user break
> (nth-root 10000000000 13 3)
. . user break
> (nth-root 10000000000 13 4)
. . user break
> (nth-root 10000000000 13 5)
. . user break
; And to my surprise, it works for 32nd power :(
> (nth-root 10000000000 32 4)
3.7737871042519613
>