Chapter 3, Modularity, Objects, and State
Exercise 3.54
Lets first check the output:
Note we need, $n^{th}$ element to be $(n+1)!$.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
1 ]=> (stream-ref factorials 4)
;Value: 120
1 ]=> (stream-ref factorials 3)
;Value: 24
1 ]=> (stream-ref factorials 2)
;Value: 6
1 ]=> (stream-ref factorials 1)
;Value: 2
1 ]=> (stream-ref factorials 0)
;Value: 1
1 ]=> (stream-ref factorials 5)
;Value: 720
1 ]=> (stream-ref factorials 20)
;Value: 51090942171709440000
1 ]=> (stream-ref factorials 30)
;Value: 8222838654177922817725562880000000
1 ]=> (stream-ref factorials 40)
;Value: 33452526613163807108170062053440751665152000000000
1 ]=> (stream-ref factorials 60)
;Value: 507580213877224798800856812176625227226004528988036003099405939480985600000000000000
1 ]=> (stream-ref factorials 100)
;Value: 9425947759838359420851623124482936749562312794702543768327889353416977599316221476503087861591808346911623490003549599583369706302603264000000000000000000000000
The code relevant for this exercise is at the top. However I am including the complete code.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
(define factorials (cons-stream 1 (mul-streams factorials (integers-starting-from 2))))
(define (mul-streams s1 s2)
(stream-map * s1 s2))
(define integers (cons-stream 1 (add-streams ones integers)))
(define (add-streams s1 s2)
(stream-map + s1 s2))
(define ones (cons-stream 1 ones))
(define (integers-starting-from n)
(cons-stream n (integers-starting-from (+ n 1))))
(define (display-stream s)
(stream-for-each display-line s))
(define (display-line x)
(newline)
(display x))
(define (stream-ref s n)
(if (= n 0)
(stream-car s)
(stream-ref (stream-cdr s) (- n 1))))
(define (stream-map proc s)
(if (stream-null? s)
the-empty-stream
(cons-stream (proc (stream-car s))
(stream-map proc (stream-cdr s)))))
(define (stream-for-each proc s)
(if (stream-null? s)
'done
(begin (proc (stream-car s))
(stream-for-each proc (stream-cdr s)))))
(define (stream-map proc . argstreams)
(if (stream-null? (car argstreams))
the-empty-stream
(cons-stream
(apply proc (map stream-car argstreams))
(apply stream-map
(cons proc (map stream-cdr argstreams))))))
(define (stream-enumerate-interval low high)
(if (> low high)
the-empty-stream
(cons-stream
low
(stream-enumerate-interval (+ low 1) high))))
(define (stream-filter pred stream)
(cond ((stream-null? stream) the-empty-stream)
((pred (stream-car stream))
(cons-stream (stream-car stream)
(stream-filter pred
(stream-cdr stream))))
(else (stream-filter pred (stream-cdr stream)))))
(define (stream-car stream) (car stream))
(define (stream-cdr stream) (force (cdr stream)))
(define (force exp) (exp))
(define-syntax cons-stream
(syntax-rules ()
((_ a b) (cons a (delay b)))))
(define-syntax delay
(syntax-rules ()
((_ exp) (memo-proc (lambda () exp)))))
(define (memo-proc proc)
(let ((already-run? false) (result false))
(lambda ()
(if (not already-run?)
(begin (set! result (proc))
(set! already-run? true)
result)
result))))