### Chapter 2, Building Abstractions with Data

### Section - 2.5 - Systems with Generic Operations

#### Exercise 2.92

It took quite some time to get it working. At first glance it looked simple but :) This exercise felt boring as it was just a tedious task without any new underlying concepts. Perhaps I should not have done it but when I realised this I found myself in the middle of the solution so went ahead.

The outline of my approach:

There are two parts (i) Convert polynomial cannonical (ii) Changing operations `add`

and `mul`

to work with cannonical types.

Note: To decide priority - alphabetic ordering of the variable names is used.

(i) Convert to cannonial form:

This is easy. Lets assume we have `add`

and `mul`

that supports canonical form. Since our polynomial are represented as a sum of product form - we take every product, lets call it term, we just need to convert each of these terms(product) into canonical forms and add them! Now think of each term - it is a product of cofficient and power/order of the variable. Just convert the coefficient into cannonical and `mul`

the converted coefficient with our variable raised to appropriate power/order.

The next problem is how to integrate this conversion in our existing system - Just convert to canonical form in the public api to make-polynomial. This should not be in the internal api to make polynomial because then it will go into loop.

Thats it! Here is the code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

(define (make-canonical var terms)
(let ((list-type (type-tag terms)))
(if (empty-termlist? terms)
(make-poly var (empty-termlist-of-type list-type))
(let ((term (first-term terms)))
(add-poly
(make-canonical var (rest-terms terms))
(let ((cof (coeff term))
(ord (order term)))
(let ((type (type-tag term)))
(if (equal? type 'polynomial)
(let ((cof-poly (contents cof)))
(let ((cof-can (make-canonical (variable cof-poly) (term-list cof-poly))))
(mul-poly cof-can (make-poly-with-term ord 1 list-type var))
)
)
(make-poly-with-term ord cof list-type var)
)
)
)
)
)
)
)
)

(ii) Changing operations `add`

and `mul`

to work with canonical forms.

This is also easy:

We assume that all polynomicals passed to `add`

or `mul`

are canonical forms.

For add: if two polynomials are in different variables we just need to add the polynomial with lower priority variable as a constant in polynomial with higher priority variable. This can be done easily just be converting or raising the lower type polynomial into higher one. For eg: To add $\, (5 x^2 + 10 x + 100 x^0)$ and $(y^3 + 2 y^2 + 11 y^0) \,$. Here we first convert the lower priority polynomial(with variable $y$) into $(y^3 + 2 y^2 + 11 y^0) x^0$. Now we can just add them using our old procedure because now both polynomials are of same variable. The rest of the things will be taken cared by recursion :) Except for the case when we add/mul a polynomial and a number - This operation is not supported with our older `add`

method.

- One way to do this is to
*raise*number into polynomial. I did not feel correct to*raise*numbers as it raises the question of which type of variable should the number be raised into. - Since we are using
`add`

which is internally calls`apply-generic`

- it is difficult to do without*raising*the number to polynomial. (Note that in a way it appears a limitation of`apply-generic`

. It would have been better if we have an`apply-generic`

where we should be able to add polynomial and any type of number. Thus a way to identify types of number. Also another problem to notice is that suppose even if we allowed to raise a number to polynomial and we wrote a raise to raise complex to polynomial then all our numbers will be raised to complex types and in few situation they will not be dropped to basic type(when there is no arithmetic operation is performed)). - Now, To avoid raising types I need to identify the places in polynomial package where a number and polynomial are added or multiplied. This is easy to spot - Its only the places where we are adding coefficients by calling generic
`add`

. - Now instead of using
`generic`

add we use our new`hybrid-add`

that checks if both arguments are number or polynomial then it calls generic`add`

else if we add/mul polynomial by a constant it creates a new polynomial with this constant and then performs the actual operation(add-poly/mul-poly). Note that another approach can be to still use`apply-generic`

by installing/putting appropriate procedures in the hash table. The problem is`apply-generic`

*strips off*type-tag before calling the installed procedure. This is a probelm - consider for eg when we add the number to the polynomial - we are not adding directly - we are adding this number by adding this as a term with 0 order to the polynomial. Thus the actual number addition may not even happen if the polynomial does not have any constant term before. Now suppose later on this polynomial is added to another polynomial(both having constant terms) then addition of the last term/constant term will happen again by`add`

. But at this point this add will not work because - we stripped the type-tag from the number in the last step! - The above point brings an interesting question - How to handle such situation where all we need to an operation that can take any type of number and do not strips the type-tags because we are not actually doing any number arithmetic in there? Hope this gets answered in later part of the book. Perhaps one solution can be that
`apply-generic`

does not do any untagging/tagging - its just left to the individual packages. -As of now I just went ahead with`mixed-add`

which does some work that should actually be done by`apply-generic`

.

For mul: this is similar to add - just convert lower variable polynomial into higher and multiply!

Both steps look really simple but it took me sometime to arrive at these steps as well as some time also spent in problems with `tagging`

. Internal procedures in general do not need to tag the types but we can not avoid them completely even in the internal procedures and need to pay attention to every operation whether we need to remove type-tag before proceeding or not. This made me realise that how easy it is in languages where late-binding is supported.

Another problem arises while adding if some coefficient becomes zero or while multiplying by a constant - these details are taken cared in procedure `make-poly-with-term`

.

Note: I dont support operation for adding a number and a polynomial directly from outside - Outer api only supports addition/multiplication of polynomials but if situation happens when carrying out the operation - number and polynomial are added/multiplied then it works as mentioned in the above approach.

So here goes the complete code(Examples are at the bottom):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

#lang sicp
(#%require (only racket/base error))
(#%require (only racket/base make-hash))
(#%require (only racket/base hash-set!))
(#%require (only racket/base hash-ref))
;Polynomial Package
(define (install-polynomial-package)
(define (make-canonical var terms)
(let ((list-type (type-tag terms)))
(if (empty-termlist? terms)
(make-poly var (empty-termlist-of-type list-type))
(let ((term (first-term terms)))
(add-poly
(make-canonical var (rest-terms terms))
(let ((cof (coeff term))
(ord (order term)))
(let ((type (type-tag term)))
(if (equal? type 'polynomial)
(let ((cof-poly (contents cof)))
(let ((cof-can (make-canonical (variable cof-poly) (term-list cof-poly))))
(mul-poly cof-can (make-poly-with-term ord 1 list-type var))
)
)
(make-poly-with-term ord cof list-type var)
)
)
)
)
)
)
)
)
;; internal procedures
;; representation of poly
(define (make-poly variable term-list)
(cons variable term-list)
)
(define (variable p) (car p))
(define (term-list p) (cdr p))
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2) (and (variable? v1) (variable? v2) (eq? v1 v2)))
;; representation of terms and term lists
(define (adjoin-term term list)
((apply-generic 'adjoin-term-proc list) term)
)
(define (first-term terms)
(apply-generic 'first-term terms)
)
(define (rest-terms terms)
(apply-generic 'rest-terms terms)
)
(define (empty-termlist? terms)
(apply-generic 'empty-termlist? terms)
)
(define (empty-termlist-of-type type) ((get 'empty-termlist type)))
(define (make-term order coeff) (list order coeff))
(define (order term) (car term))
(define (coeff term) (cadr term))
(define (order-by-priority p1 p2)
(let ((var1 (variable p1))
(var2 (variable p2)))
(if (string<? (symbol->string var1) (symbol->string var2))
(cons p1 p2)
(cons p2 p1)
)
)
)
(define (make-poly-with-term ord coff list-type var)
(let ((empty-list ((get 'empty-termlist list-type))))
(if (=zero? coff)
(make-poly var empty-list)
(let ((type (type-tag coff)))
(if (equal? type 'polynomial)
(let ((poly (contents coff)))
(let ((terms (term-list poly)))
(let ((first (first-term terms)))
(let ((first-term-order (order first)))
(if (= first-term-order 0)
(let ((tl (adjoin-term (make-term ord (coeff first)) empty-list)))
(make-poly var tl)
)
(let ((tl (adjoin-term (make-term ord coff) empty-list)))
(make-poly var tl)
)
)
)
)
)
)
(let ((tl (adjoin-term (make-term ord coff) empty-list)))
(make-poly var tl)
)
)
)
)
)
)
(define (add-poly p1 p2)
(if (same-variable? (variable p1) (variable p2))
(make-poly (variable p1)
(add-terms (term-list p1)
(term-list p2)
)
)
(let ((ordered (order-by-priority p1 p2)))
(let ((high (car ordered))
(low (cdr ordered))
(list-type (type-tag (term-list p1))))
(let ((raised-low (make-poly-with-term 0 (tag low) list-type (variable high))))
(add-poly high raised-low)
)
)
)
)
)
(define (mul-poly p1 p2)
(if (same-variable? (variable p1) (variable p2))
(make-poly (variable p1)
(mul-terms (term-list p1)
(term-list p2)
)
)
(let ((ordered (order-by-priority p1 p2)))
(let ((high (car ordered))
(low (cdr ordered))
(list-type (type-tag (term-list p1))))
(let ((raised-low (make-poly-with-term 0 (tag low) list-type (variable high))))
(mul-poly high raised-low)
)
)
)
)
)
(define (div-poly p1 p2)
(if (same-variable? (variable p1) (variable p2))
(make-poly (variable p1)
(div-terms (term-list p1)
(term-list p2)
)
)
)
)
(define (div-terms L1 L2)
(let ((empty-lst (empty-termlist-of-type (type-tag (term-list L1)))))
(if (empty-termlist? L1)
(list empty-lst empty-lst)
(let ((t1 (first-term L1))
(t2 (first-term L2))
)
(if (> (order t2) (order t1))
(list empty-lst L1)
(let ((new-c (div (coeff t1) (coeff t2)))
(new-o (- (order t1) (order t2))))
(let ((rest-of-result
(div-terms
(add-terms
L1
(negate-termlist
(mul-term-by-all-terms (make-term new-o new-c) L2)
)
)
L2
)
))
(let ((quotient (car rest-of-result))
(remainder (cdr rest-of-result))
)
(list (adjoin-term (make-term new-o new-c) quotient) remainder)
)
)
)
)
)
)
)
)
(define (sub-poly p1 p2) (add-poly p1 (negate-poly p2)))
(define (negate-poly p) (make-poly (variable p) (negate-termlist (term-list p))))
(define (negate-termlist terms)
(if (empty-termlist? terms)
terms
(adjoin-term (make-term (order (first-term terms)) (apply-generic 'negate (coeff (first-term terms)))) (negate-termlist (rest-terms terms)))
)
)
(define (add-poly-to-number poly n)
(let ((var (variable poly))
(list-type (type-tag (term-list poly)))
)
(add-poly (make-poly-with-term 0 n list-type var)
poly
)
)
)
(define (mul-poly-by-number poly n)
(let ((var (variable poly))
(list-type (type-tag (term-list poly)))
)
(mul-poly (make-poly-with-term 0 n list-type var)
poly
)
)
)
(define (hybrid-add arg1 arg2)
(let ((type1 (type-tag arg1))
(type2 (type-tag arg2)))
(cond
((and (equal? 'polynomial type1) (not (equal? 'polynomial type2))) (tag (add-poly-to-number (contents arg1) arg2)))
((and (equal? 'polynomial type2) (not (equal? 'polynomial type1))) (tag (add-poly-to-number (contents arg2) arg1)))
(else (add arg1 arg2))
)
)
)
(define (hybrid-mul arg1 arg2)
(let ((type1 (type-tag arg1))
(type2 (type-tag arg2)))
(cond
((and (equal? 'polynomial type1) (not (equal? 'polynomial type2))) (tag (mul-poly-by-number (contents arg1) arg2)))
((and (equal? 'polynomial type2) (not (equal? 'polynomial type1))) (tag (mul-poly-by-number (contents arg2) arg1)))
(else (mul arg1 arg2))
)
)
)
(define (add-terms L1 L2)
(cond ((empty-termlist? L1) L2)
((empty-termlist? L2) L1)
(else
(let ((t1 (first-term L1)) (t2 (first-term L2)))
(cond ((> (order t1) (order t2))
(adjoin-term
t1 (add-terms (rest-terms L1) L2))
)
((< (order t1) (order t2))
(adjoin-term t2 (add-terms L1 (rest-terms L2))))
(else
(adjoin-term
(make-term (order t1)
(hybrid-add (coeff t1) (coeff t2))
)
(add-terms (rest-terms L1)
(rest-terms L2)
)
)
)
)
)
)
)
)
(define (mul-terms L1 L2)
(if (empty-termlist? L1)
L1
(add-terms (mul-term-by-all-terms (first-term L1) L2)
(mul-terms (rest-terms L1) L2)
)
)
)
(define (mul-term-by-all-terms t1 L)
(if (empty-termlist? L)
L
(let ((t2 (first-term L)))
(adjoin-term
(make-term (+ (order t1) (order t2))
(hybrid-mul (coeff t1) (coeff t2))
)
(mul-term-by-all-terms t1 (rest-terms L))
)
)
)
)
(define (=is-zero? poly)
(define (iter terms)
(if (apply-generic 'empty-termlist? terms)
#t
(and (=zero? (coeff (first-term terms))) (iter (rest-terms terms)))
)
)
(iter (term-list poly))
)
;; interface to rest of the system
(define (tag p) (attach-tag 'polynomial p))
(put 'add '(polynomial polynomial)
(lambda (p1 p2) (tag (add-poly p1 p2))))
(put 'sub '(polynomial polynomial)
(lambda (p1 p2) (tag (add-poly p1 (negate-poly p2)))))
(put 'mul '(polynomial polynomial)
(lambda (p1 p2) (tag (mul-poly p1 p2))))
(put 'div '(polynomial polynomial) (lambda (p1 p2) (tag (div-poly p1 p2))))
(put 'make 'polynomial
(lambda (var terms) (tag (make-poly var terms))))
(put 'make-term 'polynomial make-term)
(put 'order 'polynomial order)
(put 'coeff 'polynomial coeff)
(put 'negate '(polynomial) (lambda (p) (tag (negate-poly p))))
(put 'make-canonical 'polynomial (lambda(var terms) (tag (make-canonical var terms))))
(put '=zero? '(polynomial) =is-zero?)
'done)
(define (make-polynomial var terms)
((get 'make-canonical 'polynomial) var terms)
)
(define (make-term order coeff)
((get 'make-term 'polynomial) order coeff))
(define (order term)
((get 'order 'polynomial) term))
(define (coeff term)
((get 'coeff 'polynomial) term))
;dense-termlist package
(define (install-dense-termlist-package)
(define (adjoin-term-dense term term-list)
(define (iter count terms)
(if (= count 0)
terms
(iter (- count 1) (cons 0 terms))
)
)
(let ((cof (coeff term))
(count (- (order term) (length term-list)))
)
(cond
((=zero? cof) term-list)
((< count 0) (error "Can not add term - order of passed term is already present in the list"))
(else (cons cof (iter count term-list)))
)
)
)
(define (first-term term-list) (make-term (- (length term-list) 1) (car term-list)))
;; interface to rest of the system
(define (tag tl) (attach-tag 'dense-termlist tl))
(put 'empty-termlist 'dense-termlist (lambda () (tag '())))
(put 'first-term '(dense-termlist) first-term)
(put 'rest-terms '(dense-termlist) (lambda (tl) (tag (cdr tl))))
(put 'empty-termlist? '(dense-termlist) null?)
(put 'adjoin-term-proc '(dense-termlist) (lambda(tl) (lambda(term) (tag (adjoin-term-dense term tl)))))
'done)
;sparse-termlist package
(define (install-sparse-termlist-package)
(define (adjoin-term-sparse term term-list)
(if (=zero? (coeff term))
term-list
(cons term term-list)
)
)
;; interface to rest of the system
(define (tag tl) (attach-tag 'sparse-termlist tl))
(put 'empty-termlist 'sparse-termlist (lambda () (tag '())))
(put 'first-term '(sparse-termlist) (lambda (tl) (car tl)))
(put 'rest-terms '(sparse-termlist) (lambda (tl) (tag (cdr tl))))
(put 'empty-termlist? '(sparse-termlist) null?)
(put 'adjoin-term-proc '(sparse-termlist) (lambda(tl) (lambda(term) (tag (adjoin-term-sparse term tl)))))
'done)
; Code below this is the arithmetic package we built in the last section
; Arithmetic Package
(define (sine x) (sin (contents (raise-to-type 'scheme-number x))))
(define (cosine x) (cos (contents (raise-to-type 'scheme-number x))))
(define (arctan x) (atan (contents (raise-to-type 'scheme-number x))))
(define (drop arg)
(if (has-type-tag? arg)
(let ((type (type-tag arg)))
(let ((proc (get-projection type)))
(if (not (null? proc))
(let ((projected (proc arg)))
(let ((raised (raise-to-type type projected)))
(if ((get 'equ? (list type type)) (contents raised) (contents arg))
(drop projected)
arg
)
)
)
arg
)
)
)
arg
)
)
(define (apply-generic op . args)
(let ((type-tags (map type-tag args)))
(let ((proc (get op type-tags)))
(if (not (null? proc))
(drop (apply proc (map contents args)))
(let ((has-same-type
(accumulate
(lambda (a b) (and a b))
#t
(map
(lambda(x) (equal? (car type-tags) x))
(cdr type-tags)
)
)
))
(let ((highest-type (if has-same-type
(get-parent (car type-tags))
(find-highest-type type-tags)
)
))
(if (null? highest-type)
(error "Could not find a suitable ancestor" op args)
(let ((raised-args (map-until
'()
(lambda(arg)
(raise-to-type highest-type arg)
)
args
)
))
(if (not (null? raised-args))
(apply apply-generic op raised-args)
(error "Error. No suitable raise method found to raise all types into " highest-type " for raising types " type-tags)
)
)
)
)
)
)
)
)
)
(define *type-table* (make-hash))
(define (put-parent type parent)
(let ((already-set (hash-ref *type-table* (list 'parent type) '())))
(if (null? already-set)
(hash-set! *type-table* (list 'parent type) parent)
(error "Parent already defined for :" type " parent currently *present* is " already-set " the passed parent " parent)
)
)
)
(define (get-parent type)
(hash-ref *type-table* (list 'parent type) '())
)
(define (put-child type child)
(let ((already-set (hash-ref *type-table* (list 'child type) '())))
(if (null? already-set)
(hash-set! *type-table* (list 'child type) child)
(error "Child already defined for :" type " child currently *present* is " already-set " the passed child " child)
)
)
)
(define (get-child type)
(hash-ref *type-table* (list 'child type) '())
)
(define *cast-table* (make-hash))
(define (put-raise type proc)
(let ((already-set (hash-ref *cast-table* (list 'raise type) '())))
(if (null? already-set)
(hash-set! *cast-table* (list 'raise type) proc)
(error "Raise is already defined for :" type)
)
)
)
(define (get-raise type)
(hash-ref *cast-table* (list 'raise type) '())
)
(define (put-projection type proc)
(let ((already-set (hash-ref *cast-table* (list 'project type) '())))
(if (null? already-set)
(hash-set! *cast-table* (list 'project type) proc)
(error "Project is already defined for :" type)
)
)
)
(define (get-projection type)
(hash-ref *cast-table* (list 'project type) '())
)
(define (get-ancestors type)
(if (null? type)
'()
(cons type (get-ancestors (get-parent type)))
)
)
(define (contains item item-list)
(fold-left
(lambda(result new)
(or result (equal? item new))
)
#f
item-list
)
)
(define (find-highest-type type-tags)
(let ((ancestors-of-each-type (map get-ancestors type-tags)))
(let ((smallest-ancestor-set
(accumulate (lambda(new remaining)
(if (< (size new) (size remaining))
new
remaining
)
)
(car ancestors-of-each-type)
ancestors-of-each-type
)
))
(define (find-type-present-in-each-ancestors type-list)
(if (null? type-list)
'()
(let ((found (accumulate
(lambda (a b) (and a b))
#t
(map
(lambda(ancestors) (contains (car type-list) ancestors))
ancestors-of-each-type)
)
))
(if found
(car type-list)
(find-type-present-in-each-ancestors (cdr type-list))
)
)
)
)
(find-type-present-in-each-ancestors smallest-ancestor-set)
)
)
)
(define (raise-to-type type arg)
(cond ((null? arg) '())
((equal? type (type-tag arg)) arg)
(else (let ((proc (get-raise (type-tag arg))))
(if (null? proc)
'()
(raise-to-type type (proc arg))
)
)
)
)
)
(define (map-until until-val proc args)
(if (null? args)
'()
(let ((arg (car args)))
(let ((marg (proc arg)))
(if (equal? marg until-val)
'()
(cons marg (map-until until-val proc (cdr args)))
)
)
)
)
)
(define (fold-left op initial sequence)
(define (iter result rest)
(if (null? rest)
result
(iter (op result (car rest))
(cdr rest))))
(iter initial sequence))
(define (raise n)
((get-raise (type-tag n)) n)
)
;use mul as x can be rational-number also
(define (square x) (mul x x))
(define *op-table* (make-hash))
(define (put op type proc)
(hash-set! *op-table* (list op type) proc)
)
(define (get op type)
(hash-ref *op-table* (list op type) '())
)
(define (attach-tag type-tag contents)
(if (equal? 'scheme-number type-tag)
contents
(cons type-tag contents)
)
)
(define (has-type-tag? datum)
(cond
((number? datum) #t)
((pair? datum)
(contains (car datum) '(int complex rational))
)
(else #f)
)
)
(define (type-tag datum)
(cond
((number? datum) 'scheme-number)
((pair? datum) (car datum))
(else (error "Bad tagged datum -- TYPE-TAG" datum))
)
)
(define (contents datum)
(cond
((pair? datum) (cdr datum))
(error "Bad tagged datum -- CONTENTS" datum)
)
)
(define (filter predicate sequence)
(cond ((null? sequence) nil)
((predicate (car sequence))
(cons (car sequence)
(filter predicate (cdr sequence))))
(else (filter predicate (cdr sequence)))))
(define (size list)
(if (null? list) 0 (+ 1 (size (cdr list)))))
(define (list-and proc list)
(define (iter list)
(if (null? list)
#t
(let ((rs (proc (car list))))
(if (boolean? rs)
(if rs (iter (cdr list)) #f)
(error "Proc should return boolean")
)
)
)
)
(cond ((null? list) (error "Operation not defined for 0 items"))
((not (pair? list)) (error "Operation works only for lists"))
(else (iter list))
)
)
(define (accumulate op initial sequence)
(if (null? sequence)
initial
(op (car sequence)
(accumulate op initial (cdr sequence)))
)
)
;;;;;;;;;;;;;;;;;;;;;;;;
(define (install-int-package)
(define (tag x)
(attach-tag 'int x))
(put 'add '(int int)
(lambda (x y) (tag (+ x y))))
(put 'sub '(int int)
(lambda (x y) (tag (- x y))))
(put 'mul '(int int)
(lambda (x y) (tag (* x y))))
(put 'div '(int int)
(lambda (x y) (tag (/ x y))))
(put 'make 'int
(lambda (x) (tag x)))
;equ?
(put 'equ? '(int int) =)
(put 'negate '(int) -)
; raise operation
(put-raise 'int (lambda(x) (make-rational (contents x) 1)))
; set parent
(put-parent 'int 'rational)
(put '=zero? '(int) (lambda (x) (= x 0)))
'done
)
(define (make-integer n)
((get 'make 'int) n)
)
;;;;;;;;;;;;;;;;;;;;;;;;
(define (install-scheme-number-package)
(define (tag x)
(attach-tag 'scheme-number x))
(put 'add '(scheme-number scheme-number)
(lambda (x y) (tag (+ x y))))
(put 'sub '(scheme-number scheme-number)
(lambda (x y) (tag (- x y))))
(put 'mul '(scheme-number scheme-number)
(lambda (x y) (tag (* x y))))
(put 'div '(scheme-number scheme-number)
(lambda (x y) (tag (/ x y))))
(put 'make 'scheme-number
(lambda (x) (tag x)))
;equ?
(put 'equ? '(scheme-number scheme-number) =)
(put 'negate '(scheme-number) -)
;; following added to Scheme-number package
(put 'exp '(scheme-number scheme-number)
(lambda (x y) (tag (expt x y)))) ; using primitive expt
; raise operation
(put-raise 'scheme-number (lambda(x) (make-complex-from-real-imag (contents x) 0)))
; set parent
(put-parent 'scheme-number 'complex)
;a simple way to convert from real to rational is by multiplying and dividing by a
; constant but it will only be correct to 4 places of decimal(4 zeroes in 10000)
(define multiplier 10000)
; project operation
(put-projection 'scheme-number (lambda(c) (make-rational (floor (* (contents c) multiplier)) multiplier)))
; set child
(put-child 'scheme-number 'rational)
(put '=zero? '(scheme-number) (lambda (x) (= x 0)))
'done
)
(define (make-number n)
((get 'make 'scheme-number) n)
)
(define (install-rational-package)
;; internal procedures
(define (numer x) (car x))
(define (denom x) (cdr x))
(define (make-rat n d)
(if (and (integer? n) (integer? d))
(let ((nn (inexact->exact n))
(dd (inexact->exact d))
)
(let ((g (gcd nn dd)))
(cons (/ nn g) (/ dd g))
)
)
(error "Number and Denom shoud be integers" n d)
)
)
(define (add-rat x y)
(make-rat (+ (* (numer x) (denom y))
(* (numer y) (denom x)))
(* (denom x) (denom y))))
(define (sub-rat x y)
(make-rat (- (* (numer x) (denom y))
(* (numer y) (denom x)))
(* (denom x) (denom y))))
(define (mul-rat x y)
(make-rat (* (numer x) (numer y))
(* (denom x) (denom y))))
(define (div-rat x y)
(make-rat (* (numer x) (denom y))
(* (denom x) (numer y))))
;; equ?
(define (equ? x y)
(and (= (numer x) (numer y)) (= (denom x) (denom y))))
;; interface to rest of the system
(define (tag x) (attach-tag 'rational x))
(put 'add '(rational rational)
(lambda (x y) (tag (add-rat x y))))
; comment this to check the example suggested above for tree structure support
(put 'sub '(rational rational)
(lambda (x y) (tag (sub-rat x y))))
(put 'mul '(rational rational)
(lambda (x y) (tag (mul-rat x y))))
(put 'div '(rational rational)
(lambda (x y) (tag (div-rat x y))))
(put 'make 'rational
(lambda (n d) (tag (make-rat n d))))
(put 'equ? '(rational rational) equ?)
(put 'negate '(rational) (lambda (r) (make-rat (- (numer r)) (denom r))))
; raise operation
(put-raise 'rational (lambda(r) (make-number (/ (numer (contents r)) (denom (contents r))))))
; set parent
(put-parent 'rational 'scheme-number)
; project operation
(put-projection 'rational (lambda(r) (make-integer (floor (/ (numer (contents r)) (denom (contents r)))))))
; set child
(put-child 'rational 'int)
; uncomment this and comment above raise to make rational as child of complex instead of number
; (put-raise 'rational (lambda(r) (make-complex-from-real-imag (/ (numer (contents r)) (denom (contents r))) 0)))
; uncomment this and comment above raise to make rational as child of complex instead of number
; (put-parent 'rational 'complex)
(put '=zero? '(rational) (lambda (x) (= (numer x) 0)))
'done
)
(define (make-rational n d)
((get 'make 'rational) n d)
)
(define (install-complex-package)
;; imported procedures from rectangular and polar packages
(define (make-from-real-imag x y)
((get 'make-from-real-imag 'rectangular) x y))
(define (make-from-mag-ang r a)
((get 'make-from-mag-ang 'polar) r a))
;; internal procedures
(define (add-complex z1 z2)
(make-from-real-imag (add (apply-generic 'real-part z1) (apply-generic 'real-part z2))
(add (apply-generic 'imag-part z1) (apply-generic 'imag-part z2))))
(define (sub-complex z1 z2)
(make-from-real-imag (sub (apply-generic 'real-part z1) (apply-generic 'real-part z2))
(sub (apply-generic 'imag-part z1) (apply-generic 'imag-part z2))))
(define (mul-complex z1 z2)
(make-from-mag-ang (mul (apply-generic 'magnitude z1) (apply-generic 'magnitude z2))
(add (apply-generic 'angle z1) (apply-generic 'angle z2))))
(define (div-complex z1 z2)
(make-from-mag-ang (div (apply-generic 'magnitude z1) (apply-generic 'magnitude z2))
(sub (apply-generic 'angle z1) (apply-generic 'angle z2))))
(define (equ? z1 z2)
(and
(apply-generic 'equ? (apply-generic 'real-part z1) (apply-generic 'real-part z2))
(apply-generic 'equ? (apply-generic 'imag-part z1) (apply-generic 'imag-part z2))
)
)
(define (complex-negate z)
(make-from-real-imag
(apply-generic 'negate (apply-generic 'real-part z))
(apply-generic 'negate (apply-generic 'real-part z))
)
)
;; interface to rest of the system
(define (tag z) (attach-tag 'complex z))
(put 'add '(complex complex)
(lambda (z1 z2) (tag (add-complex z1 z2))))
(put 'sub '(complex complex)
(lambda (z1 z2) (tag (sub-complex z1 z2))))
(put 'mul '(complex complex)
(lambda (z1 z2) (tag (mul-complex z1 z2))))
(put 'div '(complex complex)
(lambda (z1 z2) (tag (div-complex z1 z2))))
(put 'make-from-real-imag 'complex
(lambda (x y) (tag (make-from-real-imag x y))))
(put 'make-from-mag-ang 'complex
(lambda (r a) (tag (make-from-mag-ang r a))))
(put 'equ? '(complex complex) equ?)
(put `nagate '(complex) complex-negate)
; raise operation is not defined for complex
; parent not defined for complex
; project operation
(put-projection
'complex
(lambda(c)
;note that we can not call apply-generic here because this method is used by drop and drop is used in generic
;thus it can go into a loop
;so need to take care of type-tags here only
; c is complex number(includes tag complex) cc is rectangular/angular including the type-tag
; Note that, the repurcurssions of drop lead to the point that real and imag can be any number except number
; thus raising it to the real number type (because apart from complex numbers, my understanding is any number can be raised to real number
(let ((cc (contents c)))
(raise-to-type 'scheme-number ((get 'real-part (list (type-tag cc))) (contents cc)))
)
)
)
; set child
(put-child 'complex 'scheme-number)
;; complex package:
(define (=is-zero? z)
(and
(= (apply-generic 'real-part z) 0)
(= (apply-generic 'imag-part z) 0)
)
)
(put '=zero? '(complex) =is-zero?)
'done
)
(define (sqrt x)
;note the magic of apply-generic
;it will convert that rational into real because expt is only defined in
;scheme-number package and rational can be raised to scheme-number
(exp x (make-rational 1 2))
)
(define (install-rectangular-package)
;; internal procedures
(define (real-part z) (car z))
(define (imag-part z) (cdr z))
(define (make-from-real-imag x y) (cons x y))
(define (magnitude z)
(sqrt (add (square (real-part z))
(square (imag-part z)))))
(define (angle z)
(arctan (div (imag-part z) (real-part z))))
(define (make-from-mag-ang r a)
(cons (mul r (cosine a)) (mul r (sine a))))
;; interface to the rest of the system
(define (tag x) (attach-tag 'rectangular x))
(put 'real-part '(rectangular) real-part)
(put 'imag-part '(rectangular) imag-part)
(put 'magnitude '(rectangular) magnitude)
(put 'angle '(rectangular) angle)
(put 'make-from-real-imag 'rectangular
(lambda (x y) (tag (make-from-real-imag x y))))
(put 'make-from-mag-ang 'rectangular
(lambda (r a) (tag (make-from-mag-ang r a))))
'done)
(define (install-polar-package)
;; internal procedures
(define (magnitude z) (car z))
(define (angle z) (cdr z))
(define (make-from-mag-ang r a) (cons r a))
(define (real-part z)
(mul (magnitude z) (cosine (angle z))))
(define (imag-part z)
(mul (magnitude z) (sine (angle z))))
(define (make-from-real-imag x y)
(cons (sqrt (add (square x) (square y)))
(arctan (div y x))))
;; interface to the rest of the system
(define (tag x) (attach-tag 'polar x))
(put 'real-part '(polar) real-part)
(put 'imag-part '(polar) imag-part)
(put 'magnitude '(polar) magnitude)
(put 'angle '(polar) angle)
(put 'make-from-real-imag 'polar
(lambda (x y) (tag (make-from-real-imag x y))))
(put 'make-from-mag-ang 'polar
(lambda (r a) (tag (make-from-mag-ang r a))))
'done)
(define (make-complex-from-real-imag x y)
((get 'make-from-real-imag 'complex) x y))
(define (make-complex-from-mag-ang r a)
((get 'make-from-mag-ang 'complex) r a))
(define (equ? x y)
(apply-generic 'equ? x y)
)
(define (exp x y) (apply-generic 'exp x y))
(define (add x y) (apply-generic 'add x y))
(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))
(define (div x y) (apply-generic 'div x y))
(define (=zero? x) (apply-generic '=zero? x))
(define (negate x) (apply-generic 'negate x))
(install-rectangular-package)
(install-polar-package)
(install-scheme-number-package)
(install-rational-package)
(install-int-package)
(install-complex-package)
(install-sparse-termlist-package)
(install-dense-termlist-package)
(install-polynomial-package)

Examples/Output

1
2
3
4
5
6
7
8
9
10
11
12
13
14

> (display (add (add (make-polynomial 'y (attach-tag 'sparse-termlist '((5 2) (3 2)))) (make-polynomial 'x (attach-tag 'sparse-termlist '((5 3) (3 6))))) (make-polynomial 'x (attach-tag 'sparse-termlist '((5 9) (0 1000)) ))))
(polynomial x sparse-termlist (5 (int . 12)) (3 6) (0 (polynomial y sparse-termlist (5 2) (3 2) (0 1000))))
> (display (mul (make-polynomial 'x (attach-tag 'sparse-termlist '((5 2) (3 2)))) (make-polynomial 'x (attach-tag 'sparse-termlist '((5 3) (3 6))))))
(polynomial x sparse-termlist (10 (int . 6)) (8 (int . 18)) (6 (int . 12)))
> (display (mul (make-polynomial 'y (attach-tag 'sparse-termlist '((5 2) (3 2)))) (make-polynomial 'x (attach-tag 'sparse-termlist '((5 3) (3 6))))))
(polynomial x sparse-termlist (5 (polynomial y sparse-termlist (5 (int . 6)) (3 (int . 6)))) (3 (polynomial y sparse-termlist (5 (int . 12)) (3 (int . 12)))))
> (display (add (make-polynomial 'x (attach-tag 'sparse-termlist '((2 1) (0 2)))) (make-polynomial 'y (attach-tag 'sparse-termlist '((0 8)))) ))
(polynomial x sparse-termlist (2 1) (0 (int . 10)))
> (display (add (make-polynomial 'x (attach-tag 'sparse-termlist '((2 1) (0 2)))) (make-polynomial 'x (attach-tag 'sparse-termlist '((0 8)))) ))
(polynomial x sparse-termlist (2 1) (0 (int . 10)))
; Note this below example where all the terms of polynomial in x are gone in addition except of the constant part. This can be further improved - see the procedure make-poly-with-term
> (display (add (add (make-polynomial 'y (attach-tag 'sparse-termlist '((5 2) (3 2)))) (make-polynomial 'x (attach-tag 'sparse-termlist '((5 3) (3 6))))) (make-polynomial 'x (attach-tag 'sparse-termlist '((5 -3) (3 -6) (0 1000)) ))))
(polynomial x sparse-termlist (0 (polynomial y sparse-termlist (5 2) (3 2) (0 1000))))
>